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Table I. Cationized Species in the SIMS Spectrum of p-
Aminobenzoic Acid and LiCl on Ag" 

m/e ReI intensity, % Ion_ 

137 
143,144 

149,750, 151 
155,156, 157,158 

799,201 
213,2/4, 216,218 

226, 228 
244, 246 

12 
12 
35 
5 
2 
1 

0,8 
1 

Ag2 

M+ 

(M+ Li)+ 

(M - 1 + 2Li)+ 

( M - 2 + 3Li)+ 

(Ag + 92)+ 

+ and (Ag+ Li+ 91/ 
92)+ 

(Ag+ 119)+ 
(Ag + M)+ 

" Intensities are expressed relative to m/e 120. Lithiation of lower 
mass fragments did not occur to an appreciable extent. The italicized 
ion is the most abundant in each cluster. 

to the substitution of successive hydrogen atoms by lithium. 
Our results are most simply interpreted in terms of an ion­

ization mechanism in which the major primary ion is (M + 
cation)+. The organometallic ions falling below the cationized 
molecule in mass are believed to have the cationized molecule 
as their precursor. Evidence for this view was obtained by 
preparing the protonated molecule by chemical ionization (CI) 
and observing its fragmentation pattern.10 The fragmentation 
pattern observed for (M + Ag) + in SIMS is similar to that of 
(M + H ) + in C I . " 

It now seems possible that, through cationization, SIMS 
may find a role in the analysis of labile materials such as 
compounds of biological origin. The cationization observed 
here will undoubtedly prove important in extending our un­
derstanding of the SIMS mechanism. More important still, 
these results indicate that there may be common features to 
all of the ionization methods in which a neutral molecule in the 
solid state is directly converted into a gas phase ion. Further 
exploration of this possibility would seem to be of value.12 
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Ring-Strain-Promoted 
1,2-Carbanionic Rearrangements 

Sir: 

Unequivocal examples of concerted all-carbon 1,2-anionic 
rearrangements involving migration of sp3-hybridized carbon 
are unknown.1 There appear to be two primary reasons for this: 
(1) orbital symmetry considerations2 predict sterically unlikely 
suprafacial-inversion or antarafacial-retention pathways, and 
(2) as Zimmerman23-3 and Phelan, Jaffe, and Orchin4 have 
pointed out, the energetics of the reaction are unfavorable 
(relative to the analogous carbocationic and free radical pro­
cesses) owing to the necessity of accommodating four electrons 
in one bonding and two antibonding molecular orbitals at the 
transition state. 

It occurred to us that the energetic disadvantage inherent 
in the migration of saturated carbon to an anionic center could 
be overcome at least in part by designing a system in which 
relief of ring strain provides the driving force for rearrange­
ment while at the same time the starting and final carbanions 
maintain equal degrees of resonance stabilization or better. 

An ideal preliminary substrate for such a study appeared 
to be diketone la (Scheme I) which is readily available in gram 
quantities via irradiation of the duroquinone-2,3-dimethyl-
butadiene Diels-Alder adduct.5 The present communication 
reports on the base-catalyzed rearrangement of la and on la­
beling studies which establish the overall 1,2 nature of the 
process. 

Refluxing a 40% aqueous dioxane solution of cyclobutanone 
la (0.03 M) in the presence of 0.04 M potassium hydroxide 
for 24 h afforded the known 5'6 diketone 2a in essentially 
quantiative yield. Two label-specific general mechanistic 
possibilities present themselves for this reaction: path 1, a 
1,2-shift process of an as yet unspecified nature yielding 2a, 
and path 2, a double homoenolate anion rearrangement7 af­
fording 2a'. Since for la products 2a and 2a' are identical, no 
conclusion can be drawn concerning the relative importance 
of paths 1 and 2. 

We therefore turned our attention to the synthesis of a 
substrate in which X ^ Y selecting the case X = C2H5; Y = 
CH3. Cyclobutanone lb with the required labeling pattern was 
available in modest quantities from irradiation of the Diels-
Alder adduct between 2,3-dimethylbutadiene and 2,5-di-
methyl-3,6-diethyl-p-benzoquinone.8 That the photoproduct 
was actually lb and not its "opposite" was established by NMR 
which clearly showed the acidic methine hydrogen as a quartet 
(J = 7.5 Hz) at 5 2.50. 

Treatment of lb with potassium hydroxide in aqueous di­
oxane as before afforded exclusively diketone 2b. This was 
established unambiguously by NMR shift reagent studies 
which showed a clean and successively downfield-shifted 
one-proton triplet (J = 7 Hz) upon addition of increasing 
concentrations of EuFOD.9 

The labeling study thus indicates the exclusive occurrence 
of a 1,2-shift process (path 1). At present, three mechanistic 
possibilities for this process come to mind. 
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Scheme Ia 

2b, [X=C2H5J=CH3] 

aZ = CH3 unless otherwise specified. 

2V [X=V=CH3 ] 

l£ [X = C2H5, Y-CH3] 

A. A Nonconcerted 1,2 Shift via Either Carbanion 3 or Di-
radical Anion 4. This mechanism has analogy in the rear­
rangement of certain l-lithio-2,2-diaryl-4-pentenyl compounds 
which, in addition to [2,3]-sigmatropic rearrangements, un­
dergo 1,2-allyl shifts via dissociation-recombination path­
ways.10 To test for the possible involvement of 4, CIDNP ex­
periments were carried out. Under conditions such that the 
rearrangement was complete in ~1 h, no enhanced absorption 
or emission resonances were observed. The intermediacy of 
carbanion 3 also seems contraindicated by its expected but 
unobserved protonation in the aqueous medium. 

B. A Concerted 1,2-Anionic Shift. The conversion of 1 to 2 
(necessarily suprafacial with retention) is forbidden by ap­
plication of the conventional Zimmerman23 or Woodward-
Hoffman21' orbital symmetry methodologies. Epiotis,2c how­
ever, has shown that the sigmatropic stereochemical selection 
rules may be reversed for certain reactions involving polar 
(AX) transition states. Included in this category are 1,2-an-
ionic shifts. The present reaction, formally involving the mi­
gration of an allyl carbanion across the carbon atoms of an 
electron-deficient ene-l,4-dione double bond, may well fulfill 
this requirement. 

C. Successive [2,3]- and [l,3]-Sigmatropic Rearrangements. 
The intriguing possibility exists that initial rearrangement of 
the enolate of 1 gives 5 via an allowed and well-precedented10 

[2,3]-sigmatropic shift and that 5 then rearranges to 2 through 
a secondary (formal) [1,3]-sigmatropic shift. This is supported 

by the fact that generation of 5 (X = Y = H; Z = CH3) under 
the typical basic reaction conditions gives nearly quantitative 
yields of 2 (X = Y = H; Z = CH3).' ' This reaction, which is 
concertedly disallowed,2b does not occur under otherwise 
identical conditions in the absence of base. More drastic neutral 
conditions (200 °C, sealed tube) do bring about this trans­
formation, however.5 Also consistent with mechanism C is the 
observation that, while 1 (X = Y = CH3; Z = H) rearranges 
smoothly to 2 (X = Y = CH3; Z = H), the corresponding di-
hydro compound 6, which is of course incapable of [2,3] re­
arrangement, is inert.12 

Further work to attempt to distinguish between mechanisms 
A, B, and C is in progress. 
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A New Series of Antiferromagnets 

Sir: 

We report here the preparation, characterization, and 
magnetic behavior of a series of compounds of iron(III), 
A2FeX5-H2O, where A is an alkali ion and X is chloride or 
bromide. Although the materials contain discrete octahedra, 
they exhibit certain features of lower dimensional magnets at 
low temperatures, and they all undergo long-range magnetic 
ordering at easily accessible temperatures. The variation of the 
critical temperature, Tc, as the constituent ions A and X are 
changed exhibits the influence of the size and polarizability 
of the A and X ions, respectively. 

The crystals are easily grown by slow evaporation from 
acidic solution of the appropriate alkali halide and ferric halide. 
They have been characterized by elemental analysis and 
crystallographic procedures (precession camera) that lead to 
the unit cell information presented in Table I.1 Complete 
crystal structures of (NH4)2[InCl5-H20],2 (NH4)2[FeCl5-
H2O],3 and K2[InCl5-H2O]4 have been reported in which 
discrete octahedral [MCl5(H2O)]2- ions are observed. The 
water molecules are not oriented randomly, but occupy par­
ticular corners of the octahedra that lie on the symmetry planes 

Table I. Crystallographic and Magnetic Properties of A2FeXs-H2O 

TEMPERATURE ( K ) 

Figure 1. Magnetic susceptibility OfCs2FeCl5-H2O along the three crystal 
axes. Fitted curve is described in the text. 

in the cell. All these orthorhombic materials as well as those 
reported here appear to be isostructural. The indium com­
pounds are well known as hosts for EPR studies of metal ions, 
including iron.5 The compound Cs2FeCl5-H2O appears to be 
isostructural with Cs2RuCl5-H2O.6 

The three orthogonal, isothermal susceptibilities of 
Cs2FeCl5-H2O are illustrated in Figure 1; the data are repre­
sentative of all those in the series. The results appear to indicate 
a normal three-dimensional antiferromagnetic ordering, Tc 
= 6.43 ± 0.05 K, with the a axis the preferred axis of spin 
alignment. Little or no anisotropy is apparent in the data above 
Tc, suggesting that this could be a Heisenberg model system.7,8 

It is apparent, however, that the magnitude of the suscepti­
bilities throughout the paramagnetic region is too small to be 
fit in a straightforward fashion; though the data illustrated can 
in fact be fit by the Curie-Weiss law above 10-12 K, with a 
reasonable g value of 2.08 for S = 5/2, the derived Weiss con­
stant d is -14.6 K (antiferromagnetic). This is too large a value 
to accept as a valid limiting asymptote from the data presented, 
for the highest temperature accessible to us is 30 K, or only 
about 2|0|.9 The zero-field splitting for iron in the (NH4)2[Fe, 
InCl5(H2O)] EPR study at 77 K is D = -1894 G ~0.25 K, a 
value too small to influence the susceptibilities in this tem­
perature region. The situation is even worse with Rb2FeCl5-
H2O, where the Curie-Weiss law fit requires g = 2.4 and 9 = 
-60 K. The transition temperatures are relatively high for 
hydrated transition metal halide double salts and provide ev­
idence for extensive exchange interactions. 

The crystal structure of the A2MX5-H2O compounds 
suggests that hydrogen bonding may occur between adjacent 
molecules along the a axis in Cs2FeCl5-H2O, forming a chain 
in this direction. If it is assumed that the magnetic behavior 
follows this structural pattern, then a good fit to the data can 
be obtained. In fact, the curve drawn through the data (Figure 
1) is a fit to the equation of Fisher for one-dimensional classical 

A,X 
Space group 
a, A 
b, A 
c, A 
Pcalcd(Z = 4) 
Pobsd 
Tc(C^)1K 
Tc(X), K 
J/k,K 
zJ'/k, K 

Cs.Cl 
Cmcm 

IA 
17.4 
8.0 
3.3 

3.24 
6.57 ± 0.05 
6.43 ± 0.05 

-0.65 
-0.46 

Rb1Cl 
Pnma 
13.8 
9.8 
7.1 
2.9 
2.86 

10.03 ±0.05 
10.20 ±0.08 

-1.39 
-1.86 

Cs1Br 
Pnma 
14.7 
10.7 

7.6 
4.1 
4.02 

14.06 ±0.10° 
14.21 ± 0.07 

-1.6 
-2.3 

Rb1Br 
Pnma 
14.2 
10.4 

7.4 
3.9 
3.80 

22.90 ± 0.05 
22.91 ±0.05 

-2.5 
-2.5 

a A second X anomaly was also observed at 12.92 K. 
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